A (k+1)-Slope Theorem for the k-Dimensional Infinite Group Relaxation
نویسندگان
چکیده
We prove that any minimal valid function for the k-dimensional infinite group relaxation that is continuous piecewise linear with at most k+ 1 slopes and does not factor through a linear map with non-trivial kernel is extreme. This generalizes a theorem of Gomory and Johnson for k = 1, and Cornuéjols and Molinaro for k = 2.
منابع مشابه
Higher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).
متن کاملA 3-Slope Theorem for the infinite relaxation in the plane
In this paper we consider the infinite relaxation of the corner polyhedron with 2 rows. For the 1-row case, Gomory and Johnson proved in their seminal paper a sufficient condition for a minimal function to be extreme, the celebrated 2-Slope Theorem. Despite increased interest in understanding the multiple row setting, no generalization of this theorem was known for this case. We present an exte...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملInfinite product representation of solution of indefinite SturmLiouville problem
In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 23 شماره
صفحات -
تاریخ انتشار 2013